مقاله Application of Multivariate Statistical Modelling in Tempo

 

برای دریافت پروژه اینجا کلیک کنید

مقاله Application of Multivariate Statistical Modelling in Temporal Patterns of Water Chemistry in Haraz River (Mazandaran Province) word دارای 8 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله Application of Multivariate Statistical Modelling in Temporal Patterns of Water Chemistry in Haraz River (Mazandaran Province) word کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله Application of Multivariate Statistical Modelling in Temporal Patterns of Water Chemistry in Haraz River (Mazandaran Province) word ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن مقاله Application of Multivariate Statistical Modelling in Temporal Patterns of Water Chemistry in Haraz River (Mazandaran Province) word :

سال انتشار: 1388

محل انتشار: هشتمین سمینار بین المللی مهندسی رودخانه

تعداد صفحات: 8

چکیده:

Principal component analysis (PCA) was used to extract the factors associated with the physico-chemical variables in the Haraz River during four seasons in 2004-05. Using the results which were analyzed using PCA, a data matrix was produced. From the annually correlation matrix, seven principal components (PC) were extracted which explain 81.49% of the total variance of the raw data. PC1 (21.31% of the variance) is associated with the nitrogen compounds in terms of nitrate, DIN and DON and also CFU. PC2 (14.49% of the variance) is characterized by TA, TH and EC (physical parameters). PC3 (11.16% of the variance) is mainly contributed by the phosphorous compounds (DIP and DOP) and TSS. PC4 which explains 10.44% of the variance is associated with temperature and BOD5, while, PC5, PC6 and PC7 explain 10.39%, 7.25% and 6.89% of total variance are contributed by NH4+, DOP and pH and DO respectively. This study highlights the advantage of combining simple but powerful statistics with water quality monitoring.

 

 

برای دریافت پروژه اینجا کلیک کنید

کلمات کلیدی :